All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effectiveness of Text, Acoustic, and Lattice-Based Representations in Spoken Language Understanding Tasks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU150722" target="_blank" >RIV/00216305:26230/23:PU150722 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10095168" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10095168</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP49357.2023.10095168" target="_blank" >10.1109/ICASSP49357.2023.10095168</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effectiveness of Text, Acoustic, and Lattice-Based Representations in Spoken Language Understanding Tasks

  • Original language description

    In this paper, we perform an exhaustive evaluation of different representations to address the intent classification problem in a Spoken Language Understanding (SLU) setup. We benchmark three types of systems to perform the SLU intent detection task: 1) text-based, 2) lattice-based, and a novel 3) multimodal approach. Our work provides a comprehensive analysis of what could be the achievable performance of different state-of-the-art SLU systems under different circumstances, e.g., automatically- vs. manuallygenerated transcripts. We evaluate the systems on the publicly available SLURP spoken language resource corpus. Our results indicate that using richer forms of Automatic Speech Recognition (ASR) outputs, namely word-consensus-networks, allows the SLU system to improve in comparison to the 1-best setup (5.5% relative improvement). However, crossmodal approaches, i.e., learning from acoustic and text embeddings, obtains performance similar to the oracle setup, a relative improvement of 17.8% over the 1-best configuration, being a recommended alternative to overcome the limitations of working with automatically generated transcripts.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings

  • ISBN

    978-1-7281-6327-7

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    1-5

  • Publisher name

    IEEE Signal Processing Society

  • Place of publication

    Rhodes Island

  • Event location

    Rhodes Island, Greece

  • Event date

    Jun 4, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article