Dynamic Soaring in Uncertain Wind Conditions: Polynomial Chaos Expansion Approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU149411" target="_blank" >RIV/00216305:26230/24:PU149411 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-031-53969-5_9" target="_blank" >http://dx.doi.org/10.1007/978-3-031-53969-5_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-53969-5_9" target="_blank" >10.1007/978-3-031-53969-5_9</a>
Alternative languages
Result language
angličtina
Original language name
Dynamic Soaring in Uncertain Wind Conditions: Polynomial Chaos Expansion Approach
Original language description
Dynamic soaring refers to a flight technique used primarily by large seabirds to extract energy from the wind shear layers formed above ocean surface. A small Unmanned Aerial Vehicle (UAV) capable of efficient dynamic soaring maneuvers can enable long endurance missions in context of patrol or increased flight range. To realize autonomous energy-saving patterns by a UAV, a real-time trajectory generation for a dynamic soaring maneuver accounting for varying external conditions has to be performed. The design of the flight trajectory is formulated as an Optimal Control Problem (OCP) and solved within direct collocation based optimization. A surrogate model of the optimal traveling cycle capturing wind profile uncertainties is constructed using Polynomial Chaos Expansion (PCE). The unknown wind profile parameters are estimated from observed trajectory by means of a Genetic Algorithm (GA). The PCE surrogate model is subsequently utilized to update the optimal trajectory using the estimated wind profile parameters.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Machine Learning, Optimization, and Data Science
ISBN
978-3-031-53968-8
ISSN
0302-9743
e-ISSN
—
Number of pages
11
Pages from-to
104-115
Publisher name
Springer Nature Switzerland AG
Place of publication
Grasmere
Event location
Grasmere
Event date
Sep 22, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—