Deepfake Speech Detection: A Spectrogram Analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU150903" target="_blank" >RIV/00216305:26230/24:PU150903 - isvavai.cz</a>
Result on the web
<a href="https://dl.acm.org/doi/10.1145/3605098.3635911" target="_blank" >https://dl.acm.org/doi/10.1145/3605098.3635911</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3605098.3635911" target="_blank" >10.1145/3605098.3635911</a>
Alternative languages
Result language
angličtina
Original language name
Deepfake Speech Detection: A Spectrogram Analysis
Original language description
The current voice biometric systems have no natural mechanics to defend against deepfake spoofing attacks. Thus, supporting these systems with a deepfake detection solution is necessary. One of the latest approaches to deepfake speech detection is representing speech as a spectrogram and using it as an input for a deep neural network. This work thus analyzes the feasibility of different spectrograms for deepfake speech detection. We compare types of them regarding their performance, hardware requirements, and speed. We show the majority of the spectrograms are feasible for deepfake detection. However, there is no general, correct answer to selecting the best spectrogram. As we demonstrate, different spectrograms are suitable for different needs.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the ACM Symposium on Applied Computing
ISBN
979-8-4007-0243-3
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
1312-1320
Publisher name
Association for Computing Machinery
Place of publication
Avila
Event location
Avila
Event date
Apr 8, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001236958200192