All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Challenging margin-based speaker embedding extractors by using the variational information bottleneck

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU154968" target="_blank" >RIV/00216305:26230/24:PU154968 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.isca-archive.org/interspeech_2024/stafylakis24_interspeech.pdf" target="_blank" >https://www.isca-archive.org/interspeech_2024/stafylakis24_interspeech.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21437/Interspeech.2024-2058" target="_blank" >10.21437/Interspeech.2024-2058</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Challenging margin-based speaker embedding extractors by using the variational information bottleneck

  • Original language description

    Speaker embedding extractors are typically trained using a classification loss over the training speakers. During the last few years, the standard softmax/cross-entropy loss has been replaced by the margin-based losses, yielding significant im- provements in speaker recognition accuracy. Motivated by the fact that the margin merely reduces the logit of the target speaker during training, we consider a probabilistic framework that has a similar effect. The variational information bottle- neck provides a principled mechanism for making deterministic nodes stochastic, resulting in an implicit reduction of the pos- terior of the target speaker. We experiment with a wide range of speaker recognition benchmarks and scoring methods and re- port competitive results to those obtained with the state-of-the- art Additive Angular Margin loss.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/VB02000060" target="_blank" >VB02000060: Tools To Combat Voice DeepFakes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of Interspeech 2024

  • ISBN

  • ISSN

    1990-9772

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    3220-3224

  • Publisher name

    International Speech Communication Association

  • Place of publication

    Kos

  • Event location

    Kos

  • Event date

    Sep 1, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article