All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multitask Speech Recognition and Speaker Change Detection for Unknown Number of Speakers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU155583" target="_blank" >RIV/00216305:26230/24:PU155583 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10446130" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10446130</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multitask Speech Recognition and Speaker Change Detection for Unknown Number of Speakers

  • Original language description

    Traditionally, automatic speech recognition (ASR) and speaker change detection (SCD) systems have been independently trained to generate comprehensive transcripts accompanied by speaker turns. Recently, joint training of ASR and SCD systems, by inserting speaker turn tokens in the ASR training text, has been shown to be successful. In this work, we present a multitask alternative to the joint training approach. Results obtained on the mix-headset audios of AMI corpus show that the proposed multitask training yields an absolute improvement of 1.8% in coverage and purity based F1 score on SCD task without ASR degradation. We also examine the trade-offs between the ASR and SCD performance when trained using multitask criteria. Additionally, we validate the speaker change information in the embedding spaces obtained after different transformer layers of a self-supervised pre-trained model, such as XLSR-53, by integrating an SCD classifier at the output of specific transformer layers. Results r

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů