Study on Diffusion Processes in Reactive Hydrogels From Macro- and Microscopic View of Paper
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F16%3APU122101" target="_blank" >RIV/00216305:26310/16:PU122101 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Study on Diffusion Processes in Reactive Hydrogels From Macro- and Microscopic View of Paper
Original language description
This contribution is focused on study on transport properties of selected probe (Rhodamine 6G) in reactive hydrogels. Hydrogels represent important material either from scientific point of view, as well as from the view of possible applications. In present work, hydrogels based on thermoreversible biopolymer agarose were used. This non-reactive agarose hydrogel matrix can be filled with additional homogeneously distributed molecules (e.g. polyelectrolytes). For these purposes we have selected sodium alginate, hyaluronic acid, carrageenan, sodium polystyrene sulfonate, dextran and chitosan. This type of model reactive hydrogels was used as a medium for subsequent transport experiments. Two types of experimental settings of transport experiments were used in experimental part of this work (both based on diffusion process). The first method was based on the simple macroscopic study on diffusion of Rhodamine 6G from solution into cuvettes containing individual agarose-based reactive hydrogels (diffusion model of constant source). The second used technique was based on Rhodamine 6G self-diffusion measurement (method of fluorescence correlation spectroscopy). Both used methods showed to be valuable for deeper description and characterization of interactions and mobility of selected probe in reactive agarose-based hydrogel matrices. The results are indicating that the transport and barrier properties of individual agarose-based reactive hydrogels are significantly affected by polyelectrolyte charge and its charge density. The results of present work in connection with deep meta-analysis of literature can significantly contribute to further applied research and development in the area hydrogels and carrier materials based on complexes with different biopolymers and polyelectrolytes.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
21002 - Nano-processes (applications on nano-scale); (biomaterials to be 2.9)
Result continuities
Project
<a href="/en/project/LD15047" target="_blank" >LD15047: Multiscale study on the structure – transport – flow relationship in the behavior of biopolymer–based hydrogels.</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
NANOCON 2016 - Conference Proceedings
ISBN
978-80-87294-71-0
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
691-697
Publisher name
TANGER Ltd.
Place of publication
Ostrava, Česká republika
Event location
Brno
Event date
Oct 19, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000410656100120