All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Porous HA/alumina composites intended for bone-tissue engineering

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F17%3APU124422" target="_blank" >RIV/00216305:26310/17:PU124422 - isvavai.cz</a>

  • Result on the web

    <a href="http://mit.imt.si/Revija/izvodi/mit174/bartonickova.pdf" target="_blank" >http://mit.imt.si/Revija/izvodi/mit174/bartonickova.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.17222/mit.2016.191" target="_blank" >10.17222/mit.2016.191</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Porous HA/alumina composites intended for bone-tissue engineering

  • Original language description

    Ceramic biomaterials based on hydroxyapatite (HA) or alumina have been intensively studied due to their load-bearing applications in the bone-tissue replacement/reconstruction and dental applications. Here we present a study of the preparation and properties of HA/alumina (HA/Al) composites with a targeted porosity. The HA powder used for the composite's preparation was synthetized via a precipitation method under a variety of pH values. The resulting powders were verified with XRD, Raman and FTIR analyses. The particle size was assessed via SEM and laser diffraction. The as-prepared HA nanopowder and alumina powder (median 3 μm) were homogenously mixed having a composition of HA/Alumina = 90/10 (w/w). A suspension with 65 % mass fraction of the powders was properly mixed and, with the help of foaming agents, it was foamed in situ. The behavior under an increasing temperature was studied, using a heating microscope and dried foams were sintered under determined temperatures. The final sintered foams were examined in vitro in a synthetic body fluid, which predicted the behavior of bone implants in vivo. The behavior of the treated samples was studied with SEM. The newly formed HA composites were confronted with Ca2+ and PO4 3- contents in the applied body-fluid solution.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20504 - Ceramics

Result continuities

  • Project

    <a href="/en/project/LO1211" target="_blank" >LO1211: Materials Research Centre at FCH BUT- Sustainability and Development</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materiali in tehnologije

  • ISSN

    1580-2949

  • e-ISSN

    1580-3414

  • Volume of the periodical

    51

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    SI - SLOVENIA

  • Number of pages

    6

  • Pages from-to

    631-636

  • UT code for WoS article

    000408399700013

  • EID of the result in the Scopus database

    2-s2.0-85026314532