All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Silver nanoparticles stabilised with cationic single-chain surfactants. Structure-physical properties-biological activity relationship study

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F18%3APU144065" target="_blank" >RIV/00216305:26310/18:PU144065 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000451494700008" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000451494700008</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.molliq.2018.09.042" target="_blank" >10.1016/j.molliq.2018.09.042</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Silver nanoparticles stabilised with cationic single-chain surfactants. Structure-physical properties-biological activity relationship study

  • Original language description

    Increasing number of biological applications of silver nanoparticles requires a detailed determination of the relationship between nanoparticle structure and its physical and biological properties. In this paper, synthesis, measurements of nanoparticle size and zeta potential and some biological activities of silver nanoparticles stabilised with single-chain cationic surfactants are provided. The main goal of the study is the investigation of the relationship between molecular structure of stabilising agent, physicochemical properties and biological activity of cationic surfactant-stabilised silver nanoparticles. Two structural features, heterocyclic character of hydrophilic part of surfactant molecule and hydrophobicity change of its substituents, were correlated with synthesis, stability and biological activity of silver nanoparticles. Substituted ammonium, pyridinium and piperidinium surfactants were selected as stabilisers of silver nanoparticles. It was found that nanoparticle stabilising effect is improved by increasing the length of hydrophobic substituents on the ammonium polar head which results in the formation of nanoparticles small in size and with sufficiently positive zeta potential. Application of dibutylsubstituted ammonium surfactant molecules resulted in the formation of small silver nanoparticles in the size range 25-30 nm and a zeta potential of +60 mV. Aromatic pyridinium surfactant molecules provide slightly better stabilisation than saturated piperidinium surfactants. Surfactant-stabilised silver nanoparticles were antimicrobially efficient against Gram-positive pathogens and yeast. The highest cytotoxic activity was determined for silver nanoparticles stabilised with dibutyl-substituted ammonium surfactant and pyridinium surfactant which corresponds with small and charged nanoparticles formed by using these surfactants. Maximum cytotoxic activity was found in the surfactant concentration range 16-25 mu M. (C) 2018 Published by Elsevier B.V.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    JOURNAL OF MOLECULAR LIQUIDS

  • ISSN

    0167-7322

  • e-ISSN

    1873-3166

  • Volume of the periodical

    272

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    60-72

  • UT code for WoS article

    000451494700008

  • EID of the result in the Scopus database