All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Small-sized platinum nanoparticles in soil organic matter: Influence on water holding capacity, evaporation and structural rigidity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F19%3APU133440" target="_blank" >RIV/00216305:26310/19:PU133440 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0048969719337696?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0048969719337696?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scitotenv.2019.133822" target="_blank" >10.1016/j.scitotenv.2019.133822</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Small-sized platinum nanoparticles in soil organic matter: Influence on water holding capacity, evaporation and structural rigidity

  • Original language description

    Engineered and anthropogenic nanoparticles represent a new type of pollutants. Up until now, many studies have reported its adverse effect on biota, but the potential influence on the properties and functions of environmental compartments has largely been ignored. In this work, the effect of Pt nanoparticles on the functions and properties of model soil organic matter has been studied. Using differential scanning calorimetry and molecular modeling, the effect of a wide range of 3 nm Pt nanoparticles concentrations on water holding capacity, the strength of water binding, the stability of water molecule bridges and the content of aliphatic crystallites was studied. It was found that strong hydration of the nanoparticles influences the 3D water structural network and acts as kosmotropic agents (structure-forming) in water bridges and as chaotropic agents (i.e. water destructuring) in larger water volumes. Contrarily, the interaction with soil organic matter moieties partially eliminates these effects. As a result, the 3 nm Pt nanoparticles decreased the evaporation enthalpy of water in soil organic matter and supported soil desiccation. They also increased the strength of water molecule bridges and increased the soil structural rigidity even at low concentrations. Additionally, at high concentrations, they decreased the water content in soil organic matter and induced the aliphatic moieties' crystallization. It is concluded that the small-sized Pt nanoparticles, and perhaps other types as well, may affect the local physicochemical processes in soils and may consequently contribute to enhanced evapotranspiration and deterioration of soil functions. (C) 2019 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

    <a href="/en/project/LO1211" target="_blank" >LO1211: Materials Research Centre at FCH BUT- Sustainability and Development</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Science of the Total Environment

  • ISSN

    0048-9697

  • e-ISSN

    1879-1026

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    694

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    9

  • Pages from-to

    1-9

  • UT code for WoS article

    000496780900135

  • EID of the result in the Scopus database

    2-s2.0-85070299280