All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A bioresorbable biomaterial carrier and passive stabilization device to improve heart function post-myocardial infarction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F19%3APU136254" target="_blank" >RIV/00216305:26310/19:PU136254 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.msec.2019.109751" target="_blank" >https://doi.org/10.1016/j.msec.2019.109751</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.msec.2019.109751" target="_blank" >10.1016/j.msec.2019.109751</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A bioresorbable biomaterial carrier and passive stabilization device to improve heart function post-myocardial infarction

  • Original language description

    The limited regenerative capacity of the heart after a myocardial infarct results in remodeling processes that can progress to congestive heart failure (CHF). Several strategies including mechanical stabilization of the weakened myocardium and regenerative approaches (specifically stem cell technologies) have evolved which aim to prevent CHF. However, their final performance remains limited motivating the need for an advanced strategy with enhanced efficacy and reduced deleterious effects. An epicardial carrier device enabling a targeted application of a biomaterial-based therapy to the infarcted ventricle wall could potentially overcome the therapy and application related issues. Such a device could play a synergistic role in heart regeneration, including the provision of mechanical support to the remodeling heart wall, as well as providing a suitable environment for in situ stem cell delivery potentially promoting heart regeneration. In this study, we have developed a novel, single-stage concept to support the weakened myocardial region post-MI by applying an elastic, biodegradable patch (SPREADS) via a minimal-invasive, closed chest intervention to the epicardial heart surface. We show a significant increase in %LVEF 14 days post-treatment when GS (clinical gold standard treatment) was compared to GS + SPREADS + Gel with and without cells (p <= 0.001). Furthermore, we did not find a significant difference in infarct quality or blood vessel density between any of the groups which suggests that neither infarct quality nor vascularization is the mechanism of action of SPREADS. The SPREADS device could potentially be used to deliver a range of new or previously developed biomaterial hydrogels, a remarkable potential to overcome the translational hurdles associated with hydrogel delivery to the heart.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30404 - Biomaterials (as related to medical implants, devices, sensors)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials Science and Engineering C-Materials for Biological Applications

  • ISSN

    0928-4931

  • e-ISSN

    1873-0191

  • Volume of the periodical

    103

  • Issue of the periodical within the volume

    109751

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    17

  • Pages from-to

    1-17

  • UT code for WoS article

    000480664900030

  • EID of the result in the Scopus database