Cysteine-modified silica resin in DGT samplers for mercury and trace metals assessment
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F20%3APU137160" target="_blank" >RIV/00216305:26310/20:PU137160 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0045653520325157" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0045653520325157</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chemosphere.2020.128320" target="_blank" >10.1016/j.chemosphere.2020.128320</a>
Alternative languages
Result language
angličtina
Original language name
Cysteine-modified silica resin in DGT samplers for mercury and trace metals assessment
Original language description
Diffusive gradients in thin-films (DGT) is an in situ passive sampling technique to assess labile trace metal concentrations in different environmental matrix. The technique is consisting of a diffusive domain backed up by a resin gel that binds free metals and metal complexes that dissociate in the diffusive domain. This technique requires specific resin for special metals, for example mercury (Hg), since the classic resin (Chelex-100) gel is not applicable for Hg measurement. A simultaneous determination of Hg with other metals by the DGT was not yet reported.Two biomolecule-based resins were prepared by glutaraldehyde immobilisation of cysteine onto 3-amino-functionalised silica and 3-aminopropyl-functionalised silica, respectively. The load of functional groups on modified resins was qualitatively and quantitatively characterised. The modified resins were applied in the DGT technique and the uptake efficiency, elution efficiency, and linear accumulation of analytes of the DGT were tested. This novel DGT technique, using two cysteine-modified resins, can accumulate Hg and other metals in a broad range of pH and ionic strength in solutions. In the Belgian coastal zone (BCZ), the concentrations of Hg and other trace metals sampled by cysteine-modified resin-DGTs were similar as those by the other two DGT assemblies for Hg and other trace metals, respectively. The cysteine-modified silica resin combined the features of Chelex-100 resin and 3-mercaptopropyl silica resin and allowed simultaneous determination of labile Hg and other trace metals. The resin with a higher load of functional groups also showed higher performance in the further application in the DGT technique.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10406 - Analytical chemistry
Result continuities
Project
<a href="/en/project/LO1211" target="_blank" >LO1211: Materials Research Centre at FCH BUT- Sustainability and Development</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
CHEMOSPHERE
ISSN
0045-6535
e-ISSN
1879-1298
Volume of the periodical
neuveden
Issue of the periodical within the volume
263
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
1-13
UT code for WoS article
000595802200360
EID of the result in the Scopus database
—