All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Time-temperature resistance of transverse stressed lap joints of glued spruce and thermal analysis of adhesives

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F21%3APU139499" target="_blank" >RIV/00216305:26310/21:PU139499 - isvavai.cz</a>

  • Result on the web

    <a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=4&SID=C2vrRbgg3tmwZ5bRvar&page=1&doc=1" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=4&SID=C2vrRbgg3tmwZ5bRvar&page=1&doc=1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijadhadh.2020.102760" target="_blank" >10.1016/j.ijadhadh.2020.102760</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Time-temperature resistance of transverse stressed lap joints of glued spruce and thermal analysis of adhesives

  • Original language description

    Lap joints were prepared by gluing spruce plates with three types of adhesives (phenol-resorcinol-formaldehyde, PRF; one-component polyurethane, PUR; and epoxy, EP). The joints were exposed to 140 degrees C and 170 degrees C for 24 h (20, 40, 60, 80, 180 and 1140 min) and then loaded in four-point bending to verify the behavior of glued lap joints in building structures exposed to fire in its initial stage and stressed in transverse direction. The lap joint strength was compared to that of spruce specimens exposed to the same conditions and of the same stressed area. The failure mode of lap joints was evaluated visually; the failure mode was caused by exceeding the transverse load capacity of bulk wood. The strength of spruce fell by 40% after exposure to both temperatures for 20 min and next decrease began after 80-min exposure at 170 degrees C as a result of the beginning of hemicellulose decom-position. Only PUR improved the spruce strength at 20 degrees C (by 30%) and at both temperatures except that after exposure to 170 degrees C for long time (3 and 24 h). The PUR-spruce lap joints revealed very good fire resistance for the initial fire exposure (80 min at 140 degrees C and 40 min at 170 degrees C). The strength of both PRF and EP lap joints was the same as that of spruce at 20 degrees C but PRF improved the spruce strength at 140 degrees C after 20-min exposure (by 45%) and at 170 degrees C, where PRF lap joints bore the load irrespective of wood degradation. The EP lap joints revealed the worse thermal resistance due to the rubber state of incompletely post-cured and degraded EP. To evaluate an adhesive structure and its prospective change after thermal exposure and to evaluate the influence of an adhesive thickness, the adhesives were cured in a form of bulk and thin films and tested by Thermogravimetry (TGA), Differential Scanning Calorimetry, Fourier Transformed Infrared Spectroscopy (FTIR) and evolved gas analysis (EVA) using TGA-FTIR. Curing and post-c

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Adhesion and Adhesives

  • ISSN

    0143-7496

  • e-ISSN

    1879-0127

  • Volume of the periodical

    104

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    1-12

  • UT code for WoS article

    000589893900003

  • EID of the result in the Scopus database