All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Monitoring of Ion Mobility in the Cement Matrix to Establish Sensitivity to the ASR Caused by External Sources

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F22%3APU144358" target="_blank" >RIV/00216305:26310/22:PU144358 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1996-1944/15/14/4730" target="_blank" >https://www.mdpi.com/1996-1944/15/14/4730</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma15144730" target="_blank" >10.3390/ma15144730</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Monitoring of Ion Mobility in the Cement Matrix to Establish Sensitivity to the ASR Caused by External Sources

  • Original language description

    The possibility of the formation of an alkali-silicate reaction (ASR) is a crucial issue for the service life of concrete. The coexistence of key parameters such as the presence of alkalis, reactive SiO2, humidity, and temperature predetermine the possibility of its formation and application. When an ASR gel forms, it results in the concreting cracking and spalling as well as in the deterioration of its overall properties. The risk of ASR depends on the concentration of alkalis and their mobility, which influence their ability to penetrate the concrete. The objective of this study was to determine the ionic mobility of not only Na+ and K+, but Ca2+ as well, from external sources (0.5 and 1.0 mol/L solutions of Na/K carbonate, nitrate, and hydroxide) to a cementitious matrix as the precursor for ASR. The concentrations of ions in both the immersion solutions (ICP) and the cementitious matrix itself (SEM-EDX) were studied as a function of time, from 0 to 120 days, for leaching, and according to temperature (25 and 40 degrees C). The reaction products were characterized using SEM-EDX. Different diffusion rates and behavior were observed depending on the anion type of the external alkali source. Both sodium and potassium ions in all the three environments studied, namely carbonate, hydroxide, and nitrate, penetrated into the composite and further into its structure by different mechanisms. The action of hydroxides, in particular, transformed the original hydration products into calcium-silicate-hydrate (CASH) or ASR gel, while nitrates crystallized in pores and did not cause any changes in the hydration product. The driving force was the increased temperature of the experiment as well as the increased concentration of the solution to which the test specimen was exposed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10400 - Chemical sciences

Result continuities

  • Project

    <a href="/en/project/EF19_073%2F0016948" target="_blank" >EF19_073/0016948: Quality internal grants at BUT</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials

  • ISSN

    1996-1944

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    14

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    19

  • Pages from-to

    1-19

  • UT code for WoS article

    000833408000001

  • EID of the result in the Scopus database

    2-s2.0-85134009020