All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Characterization of Prepared Superhydrophobic Surfaces on AZ31 and AZ91 Alloys Etched with ZnCl2 and SnCl2

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F22%3APU145716" target="_blank" >RIV/00216305:26310/22:PU145716 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2079-6412/12/10/1414" target="_blank" >https://www.mdpi.com/2079-6412/12/10/1414</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/coatings12101414" target="_blank" >10.3390/coatings12101414</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Characterization of Prepared Superhydrophobic Surfaces on AZ31 and AZ91 Alloys Etched with ZnCl2 and SnCl2

  • Original language description

    Superhydrophobic surfaces were prepared using a two-step method that involved the etching of AZ31 and AZ91 magnesium alloys and then modifying the etched alloys with stearic acid. Magnesium alloys etched with ZnCl2 and SnCl2 exhibited surfaces roughened with micro- and nanoscale hierarchical structures consisting of two chemically distinct regions (Zn/Zn(OH)2 or Sn/SnO2 and Mg(OH)2). An optimum etching time of ten minutes was chosen for both etchants. Superhydrophobic surfaces with the highest contact angle were prepared when stearic acid reacted with the etched alloys at 50 °C for 4 h. Stearic acid was bound as zinc stearate and magnesium stearate on Mg alloys etched with ZnCl2 and SnCl2 solutions, respectively. The superhydrophobic process on AZ31 alloys etched with ZnCl2 and SnCl2 improved the corrosion resistance in phosphate buffered saline (PBS) solution compared to bare AZ31 alloy, with the use of ZnCl2 etchant leading to better results. An improvement in the corrosion resistance of AZ91 alloy was observed when the stearic-acid-modified AZ91 alloy was etched with SnCl2. In contrast, the use of ZnCl2 etchant to pretreat AZ91 alloy resulted in a significant deterioration in corrosion properties compared to bare AZ91 alloy. The microstructure of the Mg alloy had an impact on the etching and modification process. On the basis of the findings, a characterization of the chemistry of etching magnesium alloys and the formation of superhydrophobic surfaces was proposed. Magnesium alloys were prepared with superhydrophobic surfaces, incorporating antibacterial metals, features which may increase their potential for use in medical applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Coatings, MDPI

  • ISSN

    2079-6412

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    20

  • Pages from-to

    1414-1433

  • UT code for WoS article

    000872747200001

  • EID of the result in the Scopus database

    2-s2.0-85140885833