All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

New approach strategy for heavy metals immobilization and microbiome structure long-term industrially contaminated soils

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F22%3APU146614" target="_blank" >RIV/00216305:26310/22:PU146614 - isvavai.cz</a>

  • Alternative codes found

    RIV/62156489:43210/22:43921947

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0045653522028259" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0045653522028259</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chemosphere.2022.136332" target="_blank" >10.1016/j.chemosphere.2022.136332</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    New approach strategy for heavy metals immobilization and microbiome structure long-term industrially contaminated soils

  • Original language description

    The progress of engineering technologies highly influences the development of methods that lead to the condition improvement of areas contaminated with heavy metals (HMs). The aided phytostabilization fits into this trend, and was used to evaluate HM-immobilization effectiveness in phytostabilized soils under variable temperatures by applying 16 freezing-thawing cycles (FTC). Diatomite amendment and Lolium perenne L., also were applied. Cd/Ni/Cu/Pb/Zn each total content in phytostabilized soils were determined, along with the verification for each metal of its distribution in four extracted fractions (F1 divided by F4) from soils. Based on changes in HM distribution, each metal's stability was estimated. Moreover, HM accumulation in plant roots and stems and soil microbial composition were investigated. Independently of the experimental variant (no-FTC-exposure or FTCexposure), the above-ground biomass yields in the diatomite-amended series were higher as compared to the corresponding control series. The evident changes in Pb/Zn-bioavailability were observed. The metal stability increase was mainly attributed to metal concentration decreasing in the F1 fraction and increasing in the F4 fraction, respectively. Diatomite increased Cd/Zn-stability in not-FTC-exposed-phytostabilized soils. FTCexposure favorably influenced Pb/Zn stability. Diatomite increased soil pH values and Cd/Ni/Cu/Znbioaccumulation (except Pb) in roots than in stems (in both experimental variants). FTC-exposure influenced soil microbial composition, increasing bacteria abundance belonging to Actinobacteria, Gammaproteobacteria, and Sphingobacteria. At the genus level, FTC exposure significantly increased the abundances of Limnobacter sp., Tetrasphaera sp., Flavobacterium sp., and Dyella sp. Independently of the experimental variant, Sphingomonas sp. and Mycobacterium sp., which have a tolerance to HM contamination, were core bacterial groups, comprising about 6 - 7% of all soil bacteria.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    CHEMOSPHERE

  • ISSN

    0045-6535

  • e-ISSN

    1879-1298

  • Volume of the periodical

    308(2)

  • Issue of the periodical within the volume

    136332

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    1-14

  • UT code for WoS article

    000864035700003

  • EID of the result in the Scopus database

    2-s2.0-85138117560