All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Correlating Hydration of Alkali-Activated Slag Modified by Organic Additives to the Evolution of Its Properties

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F23%3APU147833" target="_blank" >RIV/00216305:26310/23:PU147833 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1996-1944/16/5/1908" target="_blank" >https://www.mdpi.com/1996-1944/16/5/1908</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma16051908" target="_blank" >10.3390/ma16051908</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Correlating Hydration of Alkali-Activated Slag Modified by Organic Additives to the Evolution of Its Properties

  • Original language description

    This study investigates the relationships between the hydration kinetics of waterglass-activated slag and the development of its physical-mechanical properties, as well as its color change. To modify the calorimetric response of alkali-activated slag, hexylene glycol was selected from various alcohols for in-depth experiments. In presence of hexylene glycol, the formation of initial reaction products was restricted to the slag surface, which drastically slowed down the further consumption of dissolved species and slag dissolution and consequently delayed the bulk hydration of the waterglass-activated slag by several days. This allowed to show that the corresponding calorimetric peak is directly related to the rapid evolution of the microstructure and physical-mechanical parameters and to the onset of a blue/green color change recorded as a time-lapse video. Workability loss was correlated with the first half of the second calorimetric peak, while the most rapid increase in strengths and autogenous shrinkage was related to the third calorimetric peak. Ultrasonic pulse velocity increased considerably during both the second and third calorimetric peak. Despite the modified morphology of the initial reaction products, the prolonged induction period, and the slightly reduced degree of hydration induced by hexylene glycol, the overall mechanism of alkaline activation remained unchanged in the long-term perspective. It was hypothesized that the main issue of the use of organic admixtures in alkali-activated systems is the destabilizing effect of these admixtures on soluble silicates introduced into the system with an activator.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/GA20-26896S" target="_blank" >GA20-26896S: Towards the organic admixtures tailoring for alkali-activated slag-based systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials

  • ISSN

    1996-1944

  • e-ISSN

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

    1-18

  • UT code for WoS article

    000947625200001

  • EID of the result in the Scopus database