On the dimension of the solutions set to the homogeneous linear functional differential equation of the first order
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F12%3APU102516" target="_blank" >RIV/00216305:26510/12:PU102516 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the dimension of the solutions set to the homogeneous linear functional differential equation of the first order
Original language description
Consider the homogeneous equation $$ u'(t)=ell (u)(t)qquad mbox {for a.e. } tin [a,b] $$ where $ell colon C([a,b];Bbb R)to L([a,b];Bbb R)$ is a linear bounded operator. The efficient conditions guaranteeing that the solution set to the equationconsidered is one-dimensional, generated by a positive monotone function, are established. The results obtained are applied to get new efficient conditions sufficient for the solvability of a class of boundary value problems for first order linear functional differential equations.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Czechoslovak Mathematical Journal
ISSN
0011-4642
e-ISSN
—
Volume of the periodical
62
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
20
Pages from-to
1033-1053
UT code for WoS article
—
EID of the result in the Scopus database
—