A Suitable Artificial Intelligence Model for Inventory Level Optimization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F16%3APU119403" target="_blank" >RIV/00216305:26510/16:PU119403 - isvavai.cz</a>
Result on the web
<a href="https://trends.fbm.vutbr.cz/index.php/trends/article/view/344" target="_blank" >https://trends.fbm.vutbr.cz/index.php/trends/article/view/344</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/trends.2016.25.48" target="_blank" >10.13164/trends.2016.25.48</a>
Alternative languages
Result language
angličtina
Original language name
A Suitable Artificial Intelligence Model for Inventory Level Optimization
Original language description
Purpose of the article: To examine suitable methods of artificial neural networks and their application in business operations, specifically to the supply chain management. The article discusses construction of an artificial neural networks model that can be used to facilitate optimization of inventory level and thus improve the ordering system and inventory management. For the data analysis from the area of wholesale trade with connecting material is used. Methodology/methods: Methods used in the paper consists especially of artificial neural networks and ANN-based modelling. For data analysis and preprocessing, MS Office Excel software is used. As an instrument for neural network forecasting MathWorks MATLAB Neural Network Tool was used. Deductive quantitative methods for research are also used. Scientific aim: The effort is directed at finding whether the method of prediction using artificial neural networks is suitable as a tool for enhancing the ordering system of an enterprise. The research also focuses on finding what architecture of the artificial neural networks model is the most suitable for subsequent prediction. Findings of the research show that artificial neural networks models can be used for inventory management and lot-sizing problem successfully. A network with the TRAINGDX training function and TANSIG transfer function and 6-8-1 architecture can be considered the most suitable for artificial neural network, as it shows the best results for subsequent prediction.. Conclusions resulting from the paper are beneficial for further research. It can be concluded that the created model of artificial neural network can be successfully used for predicting order size and therefore for improving the order cycle of an enterprise.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
AE - Management, administration and clerical work
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
TRENDY EKONOMIKY A MANAGEMENTU
ISSN
1802-8527
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
25
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
8
Pages from-to
48-55
UT code for WoS article
—
EID of the result in the Scopus database
—