All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Wavelet Analysis for Stock Market Forcasting

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F19%3APU132678" target="_blank" >RIV/00216305:26510/19:PU132678 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Wavelet Analysis for Stock Market Forcasting

  • Original language description

    This paper deals with wavelet analysis and its application on the stock market. The time series of financial and economic data are usually non-linear and non-stationary. It has been shown that using decomposition models improves the prediction accuracy of these time series. These techniques include wavelet analysis, which decomposes data not only in the time domain but also in the frequency domain, and can predict non-periodic or non-stationary time series more accurately than Fourier transform. Given the decomposition of the time series using wavelet analysis, and last but not least attention is drawn to the advantages and disadvantages resulting from the use of the method in the financial markets.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    50206 - Finance

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Interdisciplinární mezinárodní vědecká konference doktorandů a odborných asistentů QUAERE 2019

  • ISBN

    978-80-87952-30-6

  • ISSN

  • e-ISSN

  • Number of pages

    1229

  • Pages from-to

    149-153

  • Publisher name

    Magnanimitas

  • Place of publication

    Hradec Králové, Czech Republic

  • Event location

    online

  • Event date

    Jun 27, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article