The periodic problem for the second order integro-differential equations with distributed deviation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F20%3APU133835" target="_blank" >RIV/00216305:26510/20:PU133835 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/21:00542593
Result on the web
<a href="https://articles.math.cas.cz/10.21136/MB.2020.0061-19" target="_blank" >https://articles.math.cas.cz/10.21136/MB.2020.0061-19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/MB.2020.0061-19" target="_blank" >10.21136/MB.2020.0061-19</a>
Alternative languages
Result language
angličtina
Original language name
The periodic problem for the second order integro-differential equations with distributed deviation
Original language description
In the paper we describe the classes of unique solvability of the Dirichlet and mixed two point boundary value problems for the second order linear integro-differential equation ∫b u′′ (t) = p0 (t)u(t) + p1 (t)u(τ1 (t)) + p(t, s)u(τ (s)) ds + q(t). a On the basis of the obtained and, in some sense, optimal results for the linear problems, by the a priori boundedness principle we prove the theorems of solvability and unique solvability for the second order nonlinear functional differential equations under the mentioned boundary conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Bohemica
ISSN
0862-7959
e-ISSN
—
Volume of the periodical
146
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
10
Pages from-to
167-183
UT code for WoS article
000653772500005
EID of the result in the Scopus database
2-s2.0-85108717436