Expert System for Decision-Making on Stock Markets Using Investor Sentiment
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F21%3APU142113" target="_blank" >RIV/00216305:26510/21:PU142113 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
čeština
Original language name
Expertní systém pro rozhodování na akciových trzích s využitím sentimentu investorů
Original language description
Předložená disertační práce zkoumá potenciál využití skóre sentimentu extrahovaného z textových dat společně s historickými daty o akciovém indexu ke zlepšení výkonnosti predikce na akciovém trhu prostřednictvím vytvořeného modelu expertního systému. Vzhledem k tomu, že velké množství textových dokumentů souvisejících s financemi, které zveřejňují jak profesionální, tak amatérští investoři, nejen na online sociálních sítích, by mohly mít dopad na vývoj akciových trhů, je zásadním úkolem analyzovat finanční texty zveřejněné různými uživateli a zejména z nich extrahovat sentiment. V této práci je sentiment investorů získán z online finančních zpráv a příspěvků zveřejněných na finanční sociální platformě StockTwits. Skóre sentimentu je stanoveno pomocí hybridního přístupu kombinující modely strojového učení s učitelem a neuronových sítí, přičemž ke klasifikaci polarity sentimentu je využito vícero lexikonů pozitivních a negativních slov. Je analyzován vliv skóre sentimentu na akciový trh prostřednictvím
Czech name
Expertní systém pro rozhodování na akciových trzích s využitím sentimentu investorů
Czech description
Předložená disertační práce zkoumá potenciál využití skóre sentimentu extrahovaného z textových dat společně s historickými daty o akciovém indexu ke zlepšení výkonnosti predikce na akciovém trhu prostřednictvím vytvořeného modelu expertního systému. Vzhledem k tomu, že velké množství textových dokumentů souvisejících s financemi, které zveřejňují jak profesionální, tak amatérští investoři, nejen na online sociálních sítích, by mohly mít dopad na vývoj akciových trhů, je zásadním úkolem analyzovat finanční texty zveřejněné různými uživateli a zejména z nich extrahovat sentiment. V této práci je sentiment investorů získán z online finančních zpráv a příspěvků zveřejněných na finanční sociální platformě StockTwits. Skóre sentimentu je stanoveno pomocí hybridního přístupu kombinující modely strojového učení s učitelem a neuronových sítí, přičemž ke klasifikaci polarity sentimentu je využito vícero lexikonů pozitivních a negativních slov. Je analyzován vliv skóre sentimentu na akciový trh prostřednictvím
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
50206 - Finance
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů