All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Latent Dirichlet Allocation (LDA) Approximation Analysis of Financial-Related Text Messages

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F23%3APU147991" target="_blank" >RIV/00216305:26510/23:PU147991 - isvavai.cz</a>

  • Result on the web

    <a href="https://ecocyb.ase.ro/nr2023_1/2023_1_17_ZuzanaJANKOVA_online.pdf" target="_blank" >https://ecocyb.ase.ro/nr2023_1/2023_1_17_ZuzanaJANKOVA_online.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.24818/18423264/57.1.23.17" target="_blank" >10.24818/18423264/57.1.23.17</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Latent Dirichlet Allocation (LDA) Approximation Analysis of Financial-Related Text Messages

  • Original language description

    Topic modeling is one of the most widely used NLP techniques for discovering hidden patterns and latent relationships in text documents. Latent Dirichlet Allocation (LDA) is one of the most popular methods in this field. There are different approaches to tuning the parameters of LDA models such as Gibbs sampling, variational method, or expected propagation. This paper aims to compare individual LDA parameter tuning approaches with respect to their performance and accuracy on textual data from the financial domain. From our results, it can be concluded that for text datasets obtained from financial social platforms, stochastic solvers are the most suitable and especially less time consuming than approximation methods.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    50206 - Finance

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Economic Computation and Economic Cybernetics Studies and Research

  • ISSN

    0424-267X

  • e-ISSN

    1842-3264

  • Volume of the periodical

    57

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    RO - ROMANIA

  • Number of pages

    16

  • Pages from-to

    267-282

  • UT code for WoS article

    000960039800017

  • EID of the result in the Scopus database

    2-s2.0-85151554545