All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Coincidence Point of Edelstein Type Mappings in Fuzzy Metric Spaces and Application to the Stability of Dynamic Markets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F23%3APU148921" target="_blank" >RIV/00216305:26510/23:PU148921 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2075-1680/12/9/854" target="_blank" >https://www.mdpi.com/2075-1680/12/9/854</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/axioms12090854" target="_blank" >10.3390/axioms12090854</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Coincidence Point of Edelstein Type Mappings in Fuzzy Metric Spaces and Application to the Stability of Dynamic Markets

  • Original language description

    In this paper, we prove a coincidence point result for a pair of mappings satisfying Edelstein-type contractive condition on fuzzy metric spaces. We describe the equilibrium of a simple demand-supply model of a dynamic market by the coincidence point of demand and supply functions. With the help of the coincidence point theorem in fuzzy metric spaces, it is showed that a dynamic market of a supply-sensitive nature (or demand-sensitive nature) always tends towards its equilibrium.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10100 - Mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Axioms

  • ISSN

    2075-1680

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

    1-14

  • UT code for WoS article

    001074175100001

  • EID of the result in the Scopus database

    2-s2.0-85172085423