Coincidence Point of Edelstein Type Mappings in Fuzzy Metric Spaces and Application to the Stability of Dynamic Markets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F23%3APU148921" target="_blank" >RIV/00216305:26510/23:PU148921 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2075-1680/12/9/854" target="_blank" >https://www.mdpi.com/2075-1680/12/9/854</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/axioms12090854" target="_blank" >10.3390/axioms12090854</a>
Alternative languages
Result language
angličtina
Original language name
Coincidence Point of Edelstein Type Mappings in Fuzzy Metric Spaces and Application to the Stability of Dynamic Markets
Original language description
In this paper, we prove a coincidence point result for a pair of mappings satisfying Edelstein-type contractive condition on fuzzy metric spaces. We describe the equilibrium of a simple demand-supply model of a dynamic market by the coincidence point of demand and supply functions. With the help of the coincidence point theorem in fuzzy metric spaces, it is showed that a dynamic market of a supply-sensitive nature (or demand-sensitive nature) always tends towards its equilibrium.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Axioms
ISSN
2075-1680
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
9
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
1-14
UT code for WoS article
001074175100001
EID of the result in the Scopus database
2-s2.0-85172085423