Conditional oscillation of half-linear Euler-type dynamic equations on time scales
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F15%3APU113073" target="_blank" >RIV/00216305:26620/15:PU113073 - isvavai.cz</a>
Alternative codes found
RIV/62156489:43410/15:43906242
Result on the web
<a href="http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=3610" target="_blank" >http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=3610</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Conditional oscillation of half-linear Euler-type dynamic equations on time scales
Original language description
We investigate second-order half-linear Euler-type dynamic equations on time scales with positive periodic coefficients. We show that these equations are conditionally oscillatory, i.e., there exists a sharp borderline (a constant given by the coefficients of the given equation) between oscillation and non-oscillation of these equations. In addition, we explicitly find this so-called critical constant. In the cases that the time scale is reals or integers, our result corresponds to the classical resultsas well as in the case that the coefficients are replaced by constants and we take into account the linear equations. An example and corollaries are provided as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Qualitative Theory of Differential Equations
ISSN
1417-3875
e-ISSN
—
Volume of the periodical
2015
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
1-24
UT code for WoS article
—
EID of the result in the Scopus database
—