Exponential stability of linear discrete systems with constant coefficients and single delay
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F16%3APU120402" target="_blank" >RIV/00216305:26620/16:PU120402 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.aml.2015.07.008" target="_blank" >http://dx.doi.org/10.1016/j.aml.2015.07.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aml.2015.07.008" target="_blank" >10.1016/j.aml.2015.07.008</a>
Alternative languages
Result language
angličtina
Original language name
Exponential stability of linear discrete systems with constant coefficients and single delay
Original language description
In the paper the exponential stability and exponential estimation of the norm of solutions to a linear system of difference equations with single delay x (k + 1) = Ax (k) + Bx (k − m) , k = 0, 1, . . . is studied, where A, B are square constant matrices and m in N. New sufficient conditions for exponential stability are derived using the method of Lyapunov functions. Illustrative examples are given as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED MATHEMATICS LETTERS
ISSN
0893-9659
e-ISSN
—
Volume of the periodical
2016
Issue of the periodical within the volume
51
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
68-73
UT code for WoS article
000362612600011
EID of the result in the Scopus database
2-s2.0-84939130932