All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Design of variable exponential forgetting for estimation of the statistics of the Normal-Wishart distribution

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F16%3APU120702" target="_blank" >RIV/00216305:26620/16:PU120702 - isvavai.cz</a>

  • Result on the web

    <a href="http://ieeexplore.ieee.org/document/7810676/" target="_blank" >http://ieeexplore.ieee.org/document/7810676/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ECC.2016.7810676" target="_blank" >10.1109/ECC.2016.7810676</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Design of variable exponential forgetting for estimation of the statistics of the Normal-Wishart distribution

  • Original language description

    This paper addresses the adaptive estimation problem of time-varying systems in the Bayesian framework. The version of exponential forgetting with the variable factor is derived by solving the decision problem where the Kullback-Leibler divergence is used. This divergence is applied to evaluate the distance of two antagonistic model hypotheses from the model of parameter variations. The first hypothesis assumes no parameter changes, while the second one admits that the parameters may arbitrarily evolve throughout the parameter space. In this respect, the forgetting factor is interpreted as the probability that the first hypothesis meets the reality. This concept brings another technique into the class of self-tuned forgetting strategies for the discarding of obsolete information. The developed concept of forgetting is designed to complement the data learning process propagating the statistics of the Normal-Wishart distribution.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    European Control Conference

  • ISBN

    978-1-5090-2591-6

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    2565-2570

  • Publisher name

    IEEE

  • Place of publication

    Neuveden

  • Event location

    Aalborg

  • Event date

    Jun 29, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000392695300423