Application of LIBS: Elemental mapping
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F16%3APU140086" target="_blank" >RIV/00216305:26620/16:PU140086 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/16:00093788
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Application of LIBS: Elemental mapping
Original language description
Scan analysis by Laser-Induced Breakdown Spectroscopy (LIBS) is usually performed as sampling in the series of single points (ablation craters), in one, two, or even three directions. The spatial (lateral and depth) resolution is then determined by the size, depth and spacing of the ablation craters. Tightly focused short wavelength laser pulses enable production of both small in diameter and depth ablation craters. However, for the smallest LIBS ablation craters, the emission intensities mainly in single-pulse configuration are usually low, and not sufficient especially for minor and trace elements detection. Double-pulsed LIBS techniques may significantly enhance the signal even if a small amount of material per pulse is ablated. Therefore, double-pulse LIBS instrumentation equipped with UV ablation lasers and IR lasers in reheating mode seem to be suitable for achieving low detection limits with high spatial-resolution. LIBS ablation chambers enable further improvement of figures of merit using the atmosphere of noble gases [1]. Because of the fact that it represents a relatively simple way for fast chemical analysis (even in situ), LIBS has several interesting applications, including e.g., compositional mapping of geological samples. The LIBS potential for discrimination of geological materials using principal component analysis (PCA) was recently examined [2]. Such approach can also be applied in stand-off mode as it was demonstrated e.g., in cases of fast classification of brick samples or fast identification of biominerals [3, 4]. In laboratory conditions, LIBS is a promising alternative to much more complicated, expensive, and slower laser-ablations connected to inductively coupled plasma mass spectroscopy (LA-ICP-MS) techniques [5]. Moreover, LIBS can be effectively combined with X-ray computed tomography (CT). CT provides structure information and a 3D model of the sample, in which materials of different physical properties are distinguished, and LIBS can
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10406 - Analytical chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Horizons in World Physics
ISBN
978-16-3484-194-8
Number of pages of the result
24
Pages from-to
1-24
Number of pages of the book
299
Publisher name
Neuveden
Place of publication
Neuveden
UT code for WoS chapter
—