A differential transformation approach for solving functional differential equations with multiple delays
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F17%3APU123936" target="_blank" >RIV/00216305:26620/17:PU123936 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.cnsns.2016.12.027" target="_blank" >http://dx.doi.org/10.1016/j.cnsns.2016.12.027</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cnsns.2016.12.027" target="_blank" >10.1016/j.cnsns.2016.12.027</a>
Alternative languages
Result language
angličtina
Original language name
A differential transformation approach for solving functional differential equations with multiple delays
Original language description
In the paper an efficient semi-analytical approach based on the method of steps and the differential transformation is proposed for numerical approximation of solutions of functional differential models of delayed and neutral type on a finite interval of arbitrary length, including models with several constant delays
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Nonlinear Science and Numerical Simulation
ISSN
1007-5704
e-ISSN
1878-7274
Volume of the periodical
48
Issue of the periodical within the volume
2017
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
246-257
UT code for WoS article
000395211000019
EID of the result in the Scopus database
2-s2.0-85008474488