A New Semi-analytical Approach for Numerical Solving of Cauchy Problem for Differential Equations with Delay
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F17%3APU125326" target="_blank" >RIV/00216305:26620/17:PU125326 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.2298/FIL1715725R" target="_blank" >http://dx.doi.org/10.2298/FIL1715725R</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2298/FIL1715725R" target="_blank" >10.2298/FIL1715725R</a>
Alternative languages
Result language
angličtina
Original language name
A New Semi-analytical Approach for Numerical Solving of Cauchy Problem for Differential Equations with Delay
Original language description
In the paper, we present new semi-analytical approach for FDE’s consisting in combination of the method of steps and a technique called differential transformation method (DTM). This approach reduces the original Cauchy problem for delayed or neutral differential equation to Cauchy problem for ordinary differential equation for which DTM is convenient and efficient method.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Filomat
ISSN
0354-5180
e-ISSN
2406-0933
Volume of the periodical
31
Issue of the periodical within the volume
15
Country of publishing house
RS - THE REPUBLIC OF SERBIA
Number of pages
9
Pages from-to
4725-4733
UT code for WoS article
000416115500005
EID of the result in the Scopus database
2-s2.0-85034648145