All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Enzymatic Degradation of Lignin in Soil: A Review

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F17%3APU136033" target="_blank" >RIV/00216305:26620/17:PU136033 - isvavai.cz</a>

  • Alternative codes found

    RIV/62156489:43410/17:43911506

  • Result on the web

    <a href="https://www.mdpi.com/2071-1050/9/7/1163#stats_id" target="_blank" >https://www.mdpi.com/2071-1050/9/7/1163#stats_id</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/su9071163" target="_blank" >10.3390/su9071163</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Enzymatic Degradation of Lignin in Soil: A Review

  • Original language description

    Lignin is a major component of soil organic matter and also a rich source of carbon dioxide in soils. However, because of its complex structure and recalcitrant nature, lignin degradation is a major challenge. Efforts have been made from time to time to understand the lignin polymeric structure better and develop simpler, economical, and bio-friendly methods of degradation. Certain enzymes from specialized bacteria and fungi have been identified by researchers that can metabolize lignin and enable utilization of lignin-derived carbon sources. In this review, we attempt to provide an overview of the complexity of lignin's polymeric structure, its distribution in forest soils, and its chemical nature. Herein, we focus on lignin biodegradation by various microorganism, fungi and bacteria present in plant biomass and soils that are capable of producing ligninolytic enzymes such as lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). The relevant and recent reports have been included in this review.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40102 - Forestry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Sustainability

  • ISSN

    2071-1050

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

    1-18

  • UT code for WoS article

    000406709500092

  • EID of the result in the Scopus database