Influence of nitrogen species on the porous-alumina-assisted growth of TiO2 nanocolumn arrays
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F18%3APU128242" target="_blank" >RIV/00216305:26620/18:PU128242 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0013468618312659" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0013468618312659</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.electacta.2018.05.197" target="_blank" >10.1016/j.electacta.2018.05.197</a>
Alternative languages
Result language
angličtina
Original language name
Influence of nitrogen species on the porous-alumina-assisted growth of TiO2 nanocolumn arrays
Original language description
Porous-anodic-alumina (PAA)-assisted anodizing in oxalic acid electrolytes combined with re-anodizing to a more anodic potential of a titanium layer on substrate, followed by chemical dissolution of the PAA overlayer result in TiO2 nanocolumn arrays, which may however be chemically unstable and destroy during the PAA dissolution. Here we show that this is because the TiO2 nanocolumns have easy-todissolve alumina-titania mixed-oxide nanoroots’ penetrating the alumina barrier layer, where gas nano-bubbles and voids form respectively inside and between the titania roots, owing to the fieldassisted crystallization of the bottom titanium oxide. The problem is solved by alloying nitrogen with titanium in the precursor film, with a compositional spread of nitrogen from 2 to 50 at%, to grow differently N-doped TiO2 nanocolumn arrays via the PAA-assisted anodizing in oxalic acid at 40 V followed by re-anodizing up to 240 V. The stability of such arrays increases with increasing nitrogen content, reaching an ideal 100% level for the Tie50 at%N alloy films. The effect is proved to be due to the incorporation of nitrogen into the columns and roots with formation of oxynitride, which increases their chemical resistance and effectively suppresses the field-assisted crystallization of titania, leading to the obstructed O2 evolution, smaller bubbles and voids, less mixing of the two oxides in the roots, and thickening and merging the roots. A model is developed of the oxide growth and dissolution, explaining the instability of the pure TiO2 nanocolumn arrays and defining the stabilizing effect of the nitrogen species. The doping with nitrogen may make the TiO2 nanocolumn arrays highly appropriate for applications to photocatalysis and energy conversion.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electrochimica Acta
ISSN
0013-4686
e-ISSN
1873-3859
Volume of the periodical
281
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
796-809
UT code for WoS article
000439134600088
EID of the result in the Scopus database
—