A particle stochastic approximation EM algorithm to identify jump Markov nonlinear models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F18%3APU128432" target="_blank" >RIV/00216305:26620/18:PU128432 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ifacol.2018.09.205" target="_blank" >http://dx.doi.org/10.1016/j.ifacol.2018.09.205</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2018.09.205" target="_blank" >10.1016/j.ifacol.2018.09.205</a>
Alternative languages
Result language
angličtina
Original language name
A particle stochastic approximation EM algorithm to identify jump Markov nonlinear models
Original language description
The identification of static parameters in jump Markov nonlinear models (JMNMs) poses a key challenge in explaining nonlinear and abruptly changing behavior of dynamical systems. This paper introduces a stochastic approximation expectation maximization algorithm to facilitate offline maximum likelihood parameter estimation in JMNMs. The method relies on the construction of a particle Gibbs kernel that takes advantage of the inherent structure of the model to increase the efficiency through Rao-Blackwellization. Numerical examples illustrate that the proposed solution outperforms related approaches.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 18th Symposium on System Identification, SYSID 2018
ISBN
—
ISSN
2405-8963
e-ISSN
—
Number of pages
6
Pages from-to
676-681
Publisher name
International Federation of Automatic Control (IFAC)
Place of publication
Neuveden
Event location
Stockholm
Event date
Jul 9, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000446599200115