All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

DIMENSIONALITY REDUCTION OF MULTI-VARIATE LASER SPECTROSCOPY DATA

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F18%3APU130588" target="_blank" >RIV/00216305:26620/18:PU130588 - isvavai.cz</a>

  • Result on the web

    <a href="http://16cssc2018.spektroskopie.cz/files/CSSC_2018_BOOK_OF_ABSTRACTS_FINAL.pdf" target="_blank" >http://16cssc2018.spektroskopie.cz/files/CSSC_2018_BOOK_OF_ABSTRACTS_FINAL.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    DIMENSIONALITY REDUCTION OF MULTI-VARIATE LASER SPECTROSCOPY DATA

  • Original language description

    State-of-the-art Laser-Induced Breakdown Spectroscopy (LIBS) instruments enable high repetition rate analysis. With this experimental settings, the mapping of sample surfaces provides large data sets. The richness of information is in spectra (objects) as well as wavelengths (variables). Processing such multivariate data is, thus, a challenging task demanding more sophisticated approaches. Utilization of advanced statistical algorithms, referred to as multivariate data analysis algorithms or chemometrics, are of great interest in contemporary data processing [1-3]. Moreover, elemental composition (relation of individual elements) and structural complexity (relation of individual matrices) provides additional valuable information in understanding of the heterogeneity of, e.g., biological and geological samples. In our work, we bring an introduction to the utilization of Principal Component Analysis to processing of LIBS data. Our efforts tackled mainly the dimensionality reduction in both, objects and

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů