All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On-substrate porous-anodic-alumina-assisted gold nanostructure arrays: Meeting the challenges of various sizes and interfaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F19%3APU130659" target="_blank" >RIV/00216305:26620/19:PU130659 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0013468618326768" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0013468618326768</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.electacta.2018.11.192" target="_blank" >10.1016/j.electacta.2018.11.192</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On-substrate porous-anodic-alumina-assisted gold nanostructure arrays: Meeting the challenges of various sizes and interfaces

  • Original language description

    Arrays of 0- and 1-dimentional noble-metal nanostructures aligned on solid substrates are in demand for nanocatalysis, bio- and optical sensing, or biomolecular analysis. Here we introduce a range of advances based on a systematic research towards the porous-anodic-alumina (PAA)-assisted on-substrate arrays of gold nanostructures, such as rods and spheres, spatially-separated and highly aligned on a metal or semiconductor supporting layer via a blend of the anodizing, re-anodizing, and post-anodizing treatments applied to a thin layer of Al superimposed on selected valve metals (W, Ti, Hf), metal bilayers (W/Ti), or binary metal alloy layers (W-Ti). The achievements are due to (1) the improved self-organization in the PAA thin films during the self-localizing high-current anodization of the upper Al layer at challenging potentials ranging 100 to 250 V and 20 to 5 V, and (2) the enhanced penetration of the alumina barrier layer by the undergrowing metal oxide due to the increasing polarization (re-anodizing). The protrusions of the undergrown metal oxide can be either selectively dissolved away providing perfect nanoholes in the alumina barrier layer or left as formed in the barrier layer and annealed in vacuum to increase their electron conductance and serve as the supports for subsequent metal electrodeposition. Additionally, the in-situ amplitude-modulated constant-current pulse deposition mode combined with the original surface-wiping technique to remove the overdeposited gold allow for smooth nucleation and uniform finishing of perfect arrays of on-substrate gold nanospheres and nanorods, having diameters from 10 to over 250 nm and length up to 2.5 m

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    21001 - Nano-materials (production and properties)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ELECTROCHIMICA ACTA

  • ISSN

    0013-4686

  • e-ISSN

    1873-3859

  • Volume of the periodical

    297

  • Issue of the periodical within the volume

    -

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    988-999

  • UT code for WoS article

    000455642500109

  • EID of the result in the Scopus database

    2-s2.0-85059322230