All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Prospects of pulsed amperometric detection in flow-based analytical systems - A review

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F19%3APU131620" target="_blank" >RIV/00216305:26620/19:PU131620 - isvavai.cz</a>

  • Alternative codes found

    RIV/62156489:43210/19:43915084

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.aca.2018.10.066" target="_blank" >http://dx.doi.org/10.1016/j.aca.2018.10.066</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aca.2018.10.066" target="_blank" >10.1016/j.aca.2018.10.066</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Prospects of pulsed amperometric detection in flow-based analytical systems - A review

  • Original language description

    Electrochemical (EC) detection techniques in flow-based analytical systems such as flow injection analysis (FIA), capillary electrophoresis (CE), and liquid chromatography (LC) have attracted continuous interest over the last three decades, leading to significant advances in EC detection of a wide range of analytes in the liquid phase. In this context, the unique advantages of pulsed amperometric detection (PAD) in terms of high sensitivity and selectivity, and electrode cleaning through the application of pulsed potential for noble metal electrodes (e.g. Au, Pt), have established PAD as an important detection technique for a variety of electrochemically active compounds. PAD is especially valuable for analytes not detectable by ultraviolet (UV) photometric detection, such as organic aliphatic compounds and carbohydrates, especially when used with miniaturised capillary and chip-based separation methods. These applications have been accomplished through advances in PAD potential waveform design, as well as through the incorporation of nanomaterials (NMs) employed as microelectrodes in PAD. PAD allows online pulsed potential cleaning and coupling with capillary or standard separation techniques. The NMs are largely employed in microelectrodes to speed up mass and electron transfer between electrode surfaces and to perform as reactants in EC analysis. These advances in PAD have improved the sensitive and selective EC detection of analytes, especially in biological samples with complex sample matrices, and detection of electro-inactive compounds such as aliphatic organic compounds (i.e., formic acid, acetic acid, maleic acids, and beta-cyclodextrin complexes). This review addresses the fundamentals of PAD, the role of pulsed sequences in AD, the utilisation of different EC detectors for PAD, technological advancements in PAD waveforms, utilisation of microelectrodes in PAD techniques, advances in the use of NMs in PAD, the applications of PAD, and prospects for EC dete

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10406 - Analytical chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ANALYTICA CHIMICA ACTA

  • ISSN

    0003-2670

  • e-ISSN

    1873-4324

  • Volume of the periodical

    1052

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    17

  • Pages from-to

    10-26

  • UT code for WoS article

    000456436100002

  • EID of the result in the Scopus database