All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Supercapacitor Degradation and Life-time

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F19%3APU133691" target="_blank" >RIV/00216305:26620/19:PU133691 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Supercapacitor Degradation and Life-time

  • Original language description

    Degradation of supercapacitor (SC) is evaluated during aging tests. Continuous current cycling for 100% energy and 75% energy and discontinuous cycling for 75% energy, respectively, was performed on two different types of supercapacitors. SC parameters are determined before the aging test, and during 6x105 cycles of all three current cycling tests. Capacitance fading within the current cycling tests is correlated to the results of capacitance change within the calendar life tests at different temperatures and operating voltage. Two studied SCs technologies show different sensitivity to temperature and electric field during the calendar tests as well as slightly different evolution of capacitance during cycling. We show that the capacitance fading is driven by two mechanisms. The first one can be covered by the exponential function of square root of time of ageing, while the second one is described by the Gaussian function. The first ageing mechanism, related probably to the electrolyte parameters degradation, is observed for all the tested samples, while the second mechanism emerge only in case of hard testing conditions – elevated temperature and/or increased operating voltage. We suppose that the second ageing mechanism is related to the electrode active area degradation caused probably by the decrease of potential barrier on the electrode/electrolyte interface. Further is shown that, for the same cycling current, the longer charge/discharge time accelerates the SC’s degradation.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of 2nd Passive Components Networking Symposium

  • ISBN

    978-80-907447-0-7

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    90-97

  • Publisher name

    European Passive Components Institute s.r.o.

  • Place of publication

    Brno

  • Event location

    Bukurešť

  • Event date

    Sep 10, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article