Application of Differential Transform to Multi-Term Fractional Differential Equations with Non-Commensurate Orders
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F19%3APU134123" target="_blank" >RIV/00216305:26620/19:PU134123 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2073-8994/11/11/1390" target="_blank" >https://www.mdpi.com/2073-8994/11/11/1390</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym11111390" target="_blank" >10.3390/sym11111390</a>
Alternative languages
Result language
angličtina
Original language name
Application of Differential Transform to Multi-Term Fractional Differential Equations with Non-Commensurate Orders
Original language description
The differential transformation, an approach based on Taylor’s theorem, is proposed as convenient for finding an exact or approximate solution to the initial value problem with multiple Caputo fractional derivatives of generally non-commensurate orders. The multi-term differential equation is first transformed into a multi-order system and then into a system of recurrence relations for coefficients of formal fractional power series. The order of the fractional power series is discussed in relation to orders of derivatives appearing in the original equation. Application of the algorithm to an initial value problem gives a reliable and expected outcome including the phenomenon of symmetry in choice of orders of the differential transformation of the multi-order system.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-23815S" target="_blank" >GA19-23815S: Identification of Nonlinear Fractional-Order Dynamical Systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry
ISSN
2073-8994
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
11
Country of publishing house
CH - SWITZERLAND
Number of pages
10
Pages from-to
1-10
UT code for WoS article
000502276600065
EID of the result in the Scopus database
2-s2.0-85075524706