The ab-initio aided strain gradient elasticity theory: a new concept for fracture nanomechanics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F19%3APU134707" target="_blank" >RIV/00216305:26620/19:PU134707 - isvavai.cz</a>
Result on the web
<a href="https://www.fracturae.com/index.php/fis/article/view/2503" target="_blank" >https://www.fracturae.com/index.php/fis/article/view/2503</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3221/IGF-ESIS.49.11" target="_blank" >10.3221/IGF-ESIS.49.11</a>
Alternative languages
Result language
angličtina
Original language name
The ab-initio aided strain gradient elasticity theory: a new concept for fracture nanomechanics
Original language description
When the width of cracked nanocomponents made of brittle or quasi-brittle materials is less than approximately 10nm, the size of the K - dominance zone becomes smaller than 2 - 3nm and comparable to the fracture process zone (0.4 - 0.6nm). The fracture process starts to be dominated by far-stress field terms and the critical stress intensity factor can no more represent the total fracture driving force. This means a breakdown of a classical linear elastic fracture mechanics suffering from the undesirable crack-tip stress singularity. The contribution presents a new concept expected to properly predict the critical crack driving force for nano-components: The ab-initio aided strain gradient elasticity theory (AI-SG ET). In contrast to the Barenblatt cohesive model, the strain gradient elasticity theory does not require to prescribe a suitable field of cohesive tractions along the crack faces in order to eliminate the stress singularity and to exhibit cusp-like profiles of crack flanks close to the crack front in accordance with atomistic models. The only unknown and necessary quantity is the material length scale parameter which can be, e.g., determined by best strain gradient elasticity fits of ab-initio computed phonon-dispersions and near-dislocation displacement fields. Atomistic approaches can also be employed to determine fracture mechanical parameters (crack driving force, crack tip opening displacement) related to the moment of crack instability in a given material. Such AI-SGET codes can then be utilized to a successful prediction of fracture of cracked nanocomponents made of brittle or quasi-brittle materials.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
<a href="/en/project/GA17-18566S" target="_blank" >GA17-18566S: Combination of atomistic and higher-order elasticity approaches in fracture nanomechanics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Frattura ed Integrita Strutturale
ISSN
1971-8993
e-ISSN
—
Volume of the periodical
neuveden
Issue of the periodical within the volume
49
Country of publishing house
IT - ITALY
Number of pages
8
Pages from-to
107-114
UT code for WoS article
000487285000010
EID of the result in the Scopus database
—