All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tailoring the Oxygen Reduction Activity of Pt Nanoparticles through Surface Defects: A Simple Top-Down Approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU136401" target="_blank" >RIV/00216305:26620/20:PU136401 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acscatal.9b04974" target="_blank" >https://pubs.acs.org/doi/10.1021/acscatal.9b04974</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acscatal.9b04974" target="_blank" >10.1021/acscatal.9b04974</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tailoring the Oxygen Reduction Activity of Pt Nanoparticles through Surface Defects: A Simple Top-Down Approach

  • Original language description

    Results from Pt model catalyst surfaces have demonstrated that surface defects, in particular surface concavities, can improve the oxygen reduction reaction (ORR) kinetics. It is, however, a challenging task to synthesize nanostructured catalysts with such defective surfaces. Hence, we present a one-step and upscalable top-down approach to produce a Pt/C catalyst (with similar to 3 nm Pt nanoparticle diameter). Using high-resolution transmission electron microscopy and tomography, electrochemical techniques, high-energy X-ray measurements, and positron annihilation spectroscopy, we provide evidence of a high density of surface defects (including surface concavities). The ORR activity of the developed catalyst exceeds that of a commercial Pt/C catalyst, at least 2.7 times in terms of specific activity (similar to 1.62 mA/cm(Pt)(2), at 0.9 V vs the reversible hydrogen electrode) and at least 1.7 times in terms of mass activity (similar to 712 mA/mg(Pt)), which can be correlated to the enhanced amount of surface defects. In addition, the technique used here reduces the complexity of the synthesis (and therefore production costs) in comparison to state of the art bottom-up techniques.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Catalysis

  • ISSN

    2155-5435

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    23

  • Pages from-to

    3131-3142

  • UT code for WoS article

    000518876300024

  • EID of the result in the Scopus database