Evolution of strain across the magnetostructural phase transition in epitaxial FeRh films on different substrates
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU136835" target="_blank" >RIV/00216305:26620/20:PU136835 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/20:00116839
Result on the web
<a href="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.101.174413" target="_blank" >https://journals.aps.org/prb/abstract/10.1103/PhysRevB.101.174413</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.101.174413" target="_blank" >10.1103/PhysRevB.101.174413</a>
Alternative languages
Result language
angličtina
Original language name
Evolution of strain across the magnetostructural phase transition in epitaxial FeRh films on different substrates
Original language description
We present a detailed x-ray diffraction study of the structural evolution of epitaxial FeRh films across the temperature-driven phase transition between antiferromagnetic and ferromagnetic order. FeRh films grown onto MgO, W/MgO, and Al2O3 substrates show qualitatively different lattice distortions (tetragonal vs rhombohedral), while keeping a sharp transition above room temperature. Temperature-dependent x-ray reciprocal space mapping reveals the phase-specific crystal structure, giving access to both in-plane and out-of-plane lattice parameters and crystalline coherence lengths across different stages of the phase transition. Diffuse x-ray scattering from relaxed films is treated via a mosaic block model, which provides a robust data fitting scheme. It is found that the ferromagnetic phase fraction can stand a larger amount of strain before completely annihilating and transitioning to the antiferromagnetic phase upon cooling, as compared to heating. This is related to the distinct magnetic exchange correlations in the antiferromagnetic and ferromagnetic parent phases.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/LM2018110" target="_blank" >LM2018110: CzechNanoLab research infrastructure</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PHYSICAL REVIEW B
ISSN
2469-9950
e-ISSN
2469-9969
Volume of the periodical
101
Issue of the periodical within the volume
17
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
„174413-1“-„174413-14“
UT code for WoS article
000531182800003
EID of the result in the Scopus database
2-s2.0-85085511733