Cadmium telluride/polypyrrole nanocomposite based Love wave sensors highly sensitive to acetone at room temperature
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU136863" target="_blank" >RIV/00216305:26620/20:PU136863 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0925400520309199" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0925400520309199</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.snb.2020.128573" target="_blank" >10.1016/j.snb.2020.128573</a>
Alternative languages
Result language
angličtina
Original language name
Cadmium telluride/polypyrrole nanocomposite based Love wave sensors highly sensitive to acetone at room temperature
Original language description
Cadmium telluride/polypyrrole (CdTe/PPy) nanocomposites are synthesized and integrated into Love mode surface acoustic wave (L SAW) sensors, achieving high sensitivity to various volatile organic compounds including acetone, ethanol, and toluene. Chemical/physical analysis of the composites and their integration as second/guiding sensitive layer into the L SAW structure show no evidence of strong chemical interaction among the structural components based on CdTe quantum dots and PPy nanoparticles. The gas sensing tests are focus on the performance of L SAW sensors consisting of CdTe/PPy (1:10), CdTe/PPy (1:2), and non-modified PPy layers. Results reveal that the L SAW sensors containing CdTe/PPy (1:10) composite improve the sensing performances to acetone showing a sensitivity of 771 Hz/ppm, an estimated limit of detection (LOD) of 5 ppb, and low interference to ethanol and toluene, compared to the sensors with CdTe/PPy (1:2) or without CdTe modification. The high sensitivity of the L SAW sensors to acetone is connected with the adsorption of acetone at PPy via dipole-dipole interaction and the incorporation of CdTe in the guiding/sensitive L SAW layers.Cadmium telluride/polypyrrole (CdTe/PPy) nanocomposites are synthesized and integrated into Love mode surface acoustic wave (L SAW) sensors, achieving high sensitivity to various volatile organic compounds including acetone, ethanol, and toluene. Chemical/physical analysis of the composites and their integration as second/guiding sensitive layer into the L SAW structure show no evidence of strong chemical interaction among the structural components based on CdTe quantum dots and PPy nanoparticles. The gas sensing tests are focus on the performance of L SAW sensors consisting of CdTe/PPy (1:10), CdTe/PPy (1:2), and non-modified PPy layers. Results reveal that the L SAW sensors containing CdTe/PPy (1:10) composite improve the sensing performances to acetone showing a sensitivity of 771 Hz/ppm, an estimated limit of det
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
21001 - Nano-materials (production and properties)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Sensors and Actuators B: Chemical
ISSN
0925-4005
e-ISSN
—
Volume of the periodical
321
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
9
Pages from-to
1-9
UT code for WoS article
000562373900003
EID of the result in the Scopus database
2-s2.0-85087777429