All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dual Targeting of BRAF and mTOR Signaling in Melanoma Cells with Pyridinyl Imidazole Compounds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU136985" target="_blank" >RIV/00216305:26620/20:PU136985 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14110/20:00116135 RIV/00159816:_____/20:00072988

  • Result on the web

    <a href="https://www.mdpi.com/2072-6694/12/6/1516" target="_blank" >https://www.mdpi.com/2072-6694/12/6/1516</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/cancers12061516" target="_blank" >10.3390/cancers12061516</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dual Targeting of BRAF and mTOR Signaling in Melanoma Cells with Pyridinyl Imidazole Compounds

  • Original language description

    BRAF inhibitors can delay the progression of metastatic melanoma, but resistance usually emerges, leading to relapse. Drugs simultaneously targeting two or more pathways essential for cancer growth could slow or prevent the development of resistant clones. Here, we identified pyridinyl imidazole compounds SB202190, SB203580, and SB590885 as dual inhibitors of critical proliferative pathways in human melanoma cells bearing the V600E activating mutation of BRAF kinase. We found that the drugs simultaneously disrupt the BRAF V600E-driven extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) activity and the mechanistic target of rapamycin complex 1 (mTORC1) signaling in melanoma cells. Pyridinyl imidazole compounds directly inhibit BRAF V600E kinase. Moreover, they interfere with the endolysosomal compartment, promoting the accumulation of large acidic vacuole-like vesicles and dynamic changes in mTOR signaling. A transient increase in mTORC1 activity is followed by the enrichment of the Ragulator complex protein p18/LAMTOR1 at contact sites of large vesicles and delocalization of mTOR from the lysosomes. The induced disruption of the endolysosomal pathway not only disrupts mTORC1 signaling, but also renders melanoma cells sensitive to endoplasmic reticulum (ER) stress. Our findings identify new activities of pharmacologically relevant small molecule compounds and provide a biological rationale for the development of anti-melanoma therapeutics based on the pyridinyl imidazole core.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30204 - Oncology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Cancers

  • ISSN

    2072-6694

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    24

  • Pages from-to

    1-24

  • UT code for WoS article

    000549386200001

  • EID of the result in the Scopus database

    2-s2.0-85086338194