All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Classification of spectroscopic data - challenges, benchmarking and limitations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU137605" target="_blank" >RIV/00216305:26620/20:PU137605 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Classification of spectroscopic data - challenges, benchmarking and limitations

  • Original language description

    In modern spectroscopy, we are often dealing with large and highly complex datasets. As an example, in Laser-Induced Breakdown Spectroscopy (LIBS), measurements with a 1 kHz repetition rate were reported. Such a measurement often results in huge, high-dimensional data that are impossible to explore and analyze by a hand. Even more, many common methods (Principal Component Analysis + classifier, Support Vector Machines, etc.) may become insufficient and new strategies are required. Classification of large spectroscopic data is a challenging task due to the nature of spectra. Modern machine learning (ML) techniques based on artificial neural networks (ANN) are opening new possibilities, but often there is a lack of understanding in the decision processes (for classification). In this work, we extensively study modern approaches to classification with a focus on the explainability of decision factors. Innovative models with the incorporation of physics (or spectra modeling) are discussed. Besides mention

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů