Integrated Biomonitoring Sensing with Wearable Asymmetric Supercapacitors Based on Ti(3)C(2)MXene and 1T-Phase WS(2)Nanosheets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU138042" target="_blank" >RIV/00216305:26620/20:PU138042 - isvavai.cz</a>
Alternative codes found
RIV/60461373:22310/20:43920436
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202003673" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202003673</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.202003673" target="_blank" >10.1002/adfm.202003673</a>
Alternative languages
Result language
angličtina
Original language name
Integrated Biomonitoring Sensing with Wearable Asymmetric Supercapacitors Based on Ti(3)C(2)MXene and 1T-Phase WS(2)Nanosheets
Original language description
Research on wearable sensing technologies has been gaining considerable attention in the development of portable bio-monitoring devices for personal health. However, traditional energy storage systems with defined size and shape have inherent limitations in satisfying the performance requirements for flexible electronics. To overcome this constraint, three different configurations of flexible asymmetric supercapacitor (FASC) are fabricated on polyester/cellulose blend (PCB) cloth substrate using Ti(3)C(2)nanosheet (NS) and 1T WS2NS as electrodes, and aqueous pluronic gel as an electrolyte. Benefiting from the 2D material electrodes, the interdigitated FASC configuration exhibits excellent performance, flexibility, cyclic stability, wearability and can be configured into multiple units and shapes, which far exceed that exhibited by the textile-based FASC. Furthermore, the arbitrary ("AFN") and sandwich ("FLOWER") configurations Ti3C2NS/1T WS2NS FASC can be assembled directly on a PCB cloth substrate, thereby offering good structural integrity coupled with ease of assembly into integrated circuits of different shapes. More specifically, a lightweight, flexible, and wearable bio-monitoring system is developed by integrating force sensing device with interdigitated FASC, which can be used to monitor the physical status of human body during various activities. A potential application of this system in healthcare is successfully demonstrated and discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/GX19-26896X" target="_blank" >GX19-26896X: 2D Nanomaterials Electrochemistry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ADVANCED FUNCTIONAL MATERIALS
ISSN
1616-301X
e-ISSN
1616-3028
Volume of the periodical
30
Issue of the periodical within the volume
39
Country of publishing house
DE - GERMANY
Number of pages
10
Pages from-to
„2003673-1“-„2003673-10“
UT code for WoS article
000560769000001
EID of the result in the Scopus database
—