Metal-organic-frameworks on 3D-printed electrodes:in situelectrochemical transformation towards the oxygen evolution reaction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU138313" target="_blank" >RIV/00216305:26620/20:PU138313 - isvavai.cz</a>
Alternative codes found
RIV/60461373:22310/20:43920497
Result on the web
<a href="https://pubs.rsc.org/en/content/articlelanding/2020/SE/D0SE00503G#!divAbstract" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2020/SE/D0SE00503G#!divAbstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d0se00503g" target="_blank" >10.1039/d0se00503g</a>
Alternative languages
Result language
angličtina
Original language name
Metal-organic-frameworks on 3D-printed electrodes:in situelectrochemical transformation towards the oxygen evolution reaction
Original language description
Metal-organic framework (MOF) derived materials are important alternatives for electrochemical energy storage and conversion, due to their highly large surface area, abundant active sites, and diversity in composition and structure. In this work, a controllable electrochemical transformation of ZIF-67 into active porous metal oxides is employed for the oxygen evolution reaction (OER). ZIF-67 is directly coated onto the surface of three-dimensional (3D) printed titanium (Ti) electrodes using a step-by-stepin situgrowth and then converted into cobalt oxide (Co3O4) by electrochemical cycling, designated as ZIF-67/Ti-E electrode. Raman spectroscopy, scanning electron microscopy (SEM), and cyclic voltammetry (CV) have been used to verify the electrochemical transformation from octahedral ZIF-67 to thin sheet-shaped Co3O4. This large-surface-area Co3O4, as well as the existence of Co(IV)species right before water oxidation, plays a critical role in enhanced OER performance under alkaline electrolysis conditions. The optimized ZIF-67/Ti-E electrode has demonstrated a better OER performance with a low overpotential of 360 mV at a current density of 10 mA cm(-2)and excellent durability, compared with its counterparts produced by the widely popular calcination method. Our method provides a simplein situ, fast, mild, and energy-efficient approach to employ MOF-derived materials as promising OER catalysts using scaled-up 3D-printed electrodes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/GX19-26896X" target="_blank" >GX19-26896X: 2D Nanomaterials Electrochemistry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SUSTAINABLE ENERGY & FUELS
ISSN
2398-4902
e-ISSN
—
Volume of the periodical
4
Issue of the periodical within the volume
7
Country of publishing house
GB - UNITED KINGDOM
Number of pages
7
Pages from-to
3732-3738
UT code for WoS article
000544657200050
EID of the result in the Scopus database
—