All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Review of lead-free Bi-based dielectric ceramics for energy-storage applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F21%3APU142076" target="_blank" >RIV/00216305:26620/21:PU142076 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1361-6463/abf860" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6463/abf860</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6463/abf860" target="_blank" >10.1088/1361-6463/abf860</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Review of lead-free Bi-based dielectric ceramics for energy-storage applications

  • Original language description

    Dielectric energy-storage ceramics have the advantages of high power density and fast charge and discharge rates, and are considered to be excellent candidate materials for pulsed power-storage capacitors. At present, the application of dielectric energy-storage ceramics is hindered by their low energy density and the fact that most of them contain elemental lead. Therefore, lead-free dielectric energy-storage ceramics with high energy storage density have become a research hot spot. In this paper, we first present the requirements that dielectric energy-storage capacitors impose on the properties of ceramic materials. We then review our previous research work combined with research progress into bismuth (Bi)-based lead-free energy-storage ceramics including Bi0.5Na0.5TiO3 (BNT), BiFeO3, and Bi0.2Sr0.7TiO3, in which the composition design ideas and related energy-storage characteristics of BNT-based lead-free energy-storage ceramics are emphasized. At the same time, we highlight the problems faced by Bi-based lead-free energy-storage ceramics and some strategies for addressing them. Finally, we examine the future prospects of research into Bi-based lead-free energy-storage ceramics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20504 - Ceramics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physics D - Applied Physics

  • ISSN

    0022-3727

  • e-ISSN

    1361-6463

  • Volume of the periodical

    54

  • Issue of the periodical within the volume

    29

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    20

  • Pages from-to

    „293001-1“-„293001-20“

  • UT code for WoS article

    000649912000001

  • EID of the result in the Scopus database

    2-s2.0-85106975034