All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Corrosion resistance and surface microstructure of Mg3N2/SS thin films by plasma focus instrument

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU144991" target="_blank" >RIV/00216305:26620/22:PU144991 - isvavai.cz</a>

  • Result on the web

    <a href="https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/jemt.24138" target="_blank" >https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/jemt.24138</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/jemt.24138" target="_blank" >10.1002/jemt.24138</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Corrosion resistance and surface microstructure of Mg3N2/SS thin films by plasma focus instrument

  • Original language description

    Utilizing a plasma focus (PF) instrument, magnesium nitride (Mg3N2) thin films were synthesized on stainless steel substrates. Twenty five optimum focus shots at 8 cm distance from the anode tip were used to deposit the films at different angular positions regarded to the anode axis. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) analyses were performed to assess the surface morphology and structural characteristics of Mg3N2 films. Based on AFM images, these films were studied to understand the effect of angular position variation on their surfaces through morphological and fractal parameters. By increasing the angle, we verify that the grain size decreased from 130(0) nm to 75(5) nm and also the mean quadratic surface roughness of the films reduced in its average values from (28.97 +/- 3.24) nm to (23.10 +/- 1.34) nm. Power spectrum density analysis indicated that films become more self-affine at larger angles. Furthermore, the corrosion behavior of the films was investigated through a potentiodynamic polarization test in H2SO4 solution. It was found that the ion energy and flux, varying with the angular positions from the anode tip, directly affected the nanostructured roughness and surface morphology of the samples. The electrochemical studies of films show that the uncoated sample presented the lowest corrosion resistance. The highest corrosion resistance was obtained for the sample deposited with 25 optimum shots and at 0 degrees angular position reaching a reduction in the corrosion current density of almost 800 times compared to the pure stainless steel-304 substrate.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    21002 - Nano-processes (applications on nano-scale); (biomaterials to be 2.9)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    MICROSCOPY RESEARCH AND TECHNIQUE

  • ISSN

    1059-910X

  • e-ISSN

    1097-0029

  • Volume of the periodical

    85

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    2880-2893

  • UT code for WoS article

    000789499300001

  • EID of the result in the Scopus database

    2-s2.0-85129228717