2D MoS2/carbon/polylactic acid filament for 3D printing: Photo and electrochemical energy conversion and storage
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU145190" target="_blank" >RIV/00216305:26620/22:PU145190 - isvavai.cz</a>
Alternative codes found
RIV/62156489:43210/22:43920771
Result on the web
<a href="https://www.sciencedirect.com/science/article/abs/pii/S2352940721003644?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S2352940721003644?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apmt.2021.101301" target="_blank" >10.1016/j.apmt.2021.101301</a>
Alternative languages
Result language
angličtina
Original language name
2D MoS2/carbon/polylactic acid filament for 3D printing: Photo and electrochemical energy conversion and storage
Original language description
Fused deposition modeling (FDM) 3D printing has attracted immense attention in the field of energy conversions and storage for rapid prototyping and fabrication of devices in a facile and customized way. In this study, we fabricated an electrocatalytically active filament for FDM printing comprised of catalytically active material, conductive fillers, and polymer. We explored the different mass loading of conductive fillers (graphite, activated charcoal and multi-walled carbon nanotubes) with respect to the base polymer polylactic acid (PLA) to optimize a filament with good flexibility and conductivity. To obtain the (photo)electrocatalytically active filament, an active material was added into the optimized carbon/polymer filament to fabricate the 3D-printed electrodes. We selected MoS2 as an archetypal 2D material to demonstrate the functionality of the 3D electrodes in energy conversion and storage applications by the bespoke filament. The 3D-printed MoS2/carbon electrode shows good (photo)electrocatalytic hydrogen evolution reaction and high capacitive performance. The optimized filament fabrication protocols mitigate the complex fabrication of electrodes by fine-tuning the ratio of polymers and conductive fillers to desired active material such as other 2D materials. This allows the production of many other tunable 3D-printed electrodes for energy conversion and storage and other electrochemical applications. (C) 2021 Elsevier Ltd. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Result continuities
Project
<a href="/en/project/LM2018110" target="_blank" >LM2018110: CzechNanoLab research infrastructure</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Materials Today
ISSN
2352-9407
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
„101301-1“-„101301-10“
UT code for WoS article
000793279400007
EID of the result in the Scopus database
2-s2.0-85120857806