All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Kinetic control of self-assembly using a low-energy electron beam

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU145950" target="_blank" >RIV/00216305:26620/22:PU145950 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0169433222016427?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0169433222016427?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apsusc.2022.154106" target="_blank" >10.1016/j.apsusc.2022.154106</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Kinetic control of self-assembly using a low-energy electron beam

  • Original language description

    Self-assembly and on-surface synthesis are vital strategies used for fabricating surface-confined 1D or 2D su-pramolecular nanoarchitectures with atomic precision. In many systems, the resulting structure is determined by the kinetics of the processes involved, i.e., reaction rate, on-surface diffusion, nucleation, and growth, all of which are typically governed by temperature. However, other external factors have been only scarcely harnessed to control the on-surface chemical reaction kinetics and self-assembly. Here, we show that a low-energy electron beam can be used to steer chemical reaction kinetics and induce the growth of molecular phases unattainable by thermal annealing. The electron beam provides a well-controlled means of promoting the elementary reaction step, i.e., deprotonation of carboxyl groups. The reaction rate increases with the increasing electron beam energy beyond the threshold energy of 6 eV. Our results offer the novel prospect of controlling self-assembly, enhancing the rate of reaction steps selectively, and thus altering the kinetic rate hierarchy.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10400 - Chemical sciences

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    APPLIED SURFACE SCIENCE

  • ISSN

    0169-4332

  • e-ISSN

    1873-5584

  • Volume of the periodical

    600

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    7

  • Pages from-to

    „154106“-„“

  • UT code for WoS article

    000860211600005

  • EID of the result in the Scopus database

    2-s2.0-85133941139