All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bayesian Inference of Total Least-Squares With Known Precision

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU146344" target="_blank" >RIV/00216305:26620/22:PU146344 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9992409" target="_blank" >https://ieeexplore.ieee.org/document/9992409</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CDC51059.2022.9992409" target="_blank" >10.1109/CDC51059.2022.9992409</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bayesian Inference of Total Least-Squares With Known Precision

  • Original language description

    This paper provides a Bayesian analysis of the total least-squares problem with independent Gaussian noise of known variance. It introduces a derivation of the likelihood density function, conjugate prior probability-density function, and the posterior probability-density function. All in the shape of the Bingham distribution, introducing an unrecognized connection between orthogonal least-squares methods and directional analysis. The resulting Bayesian inference expands on available methods with statistical results. A recursive statistical identification algorithm of errors-in-variables models is laid- out. An application of the introduced inference is presented using a simulation example, emulating part of the identification process of linear permanent magnet synchronous motor drive parameters. The paper represents a crucial step towards enabling Bayesian statistical methods for problems with errors in variables.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/TN01000024" target="_blank" >TN01000024: National Competence Center - Cybernetics and Artificial Intelligence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the IEEE Conference on Decision and Control

  • ISBN

    978-1-66-546761-2

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1-6

  • Publisher name

    IEEE

  • Place of publication

    neuveden

  • Event location

    Cancún

  • Event date

    Dec 6, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article